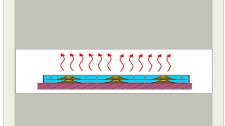
Small Business Innovation Research/Small Business Tech Transfer


Variable Gas-Conductance Radiator: Lightweight, High Turndown Spacecraft Radiator, Phase I

Completed Technology Project (2017 - 2017)

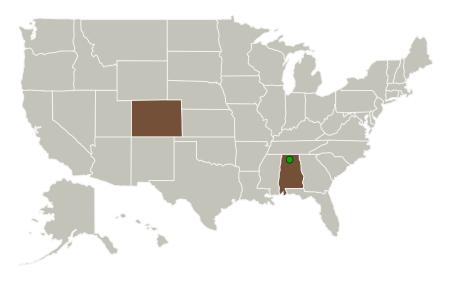
Project Introduction

Spacecraft thermal control is a critical element to maintaining spacecraft, manned, unmanned or robotic, at proper temperatures for humans, instruments and electronics to function properly. Simple, passive thermal control in which excess heat is radiated to space via blackbody radiators used to be adequate, however, as spacecraft power levels increase and mission environments become more complex, more flexible and capable thermal control systems and mechanisms are needed. Variable heat rejection is an enabling technology to reliably vary heat rejection during human and robotic spaceflight missions with wide variation in thermal environments & vehicle heat loads. Quest Thermal Group is proposing a novel Variable Gas-Conductor Radiator (VGCR) that uses variable gas conduction within an IMLI structure to control heat conduction. A VGCR could provide both high and very low heat rejection, operating as both effective radiators and high performance insulation, and capable of turndown ratios of 76:1. The NASA 2012 TA14 Thermal Management Roadmap stated radiator advancement is perhaps the most critical thermal technology development for future spacecraft and spacebased systems. NASA is seeking unique solutions for thermal control technology providing low mass highly reliable thermal control systems. As NASA moves beyond LEO, spacecraft must accommodate various mission scenarios and need variable heat rejection. Current state of the art variable radiators offer heat rejection turn-down ratios up to about 4:1. Phase I goals are to develop a new variable spacecraft radiator that can simply and efficiently provide a highly variable heat rejection using variable gas conduction within IMLI insulation, and prove feasibility of the VGCR concept to help improve radiator capabilities for future NASA and commercial spacecraft. A VGCR prototype will be modeled, designed, built and tested for thermal performance and variable heat rejection.

Variable Gas-Conductance Radiator: Lightweight, High Turndown Spacecraft Radiator, Phase I Briefing Chart Image

Table of Contents

Project Introduction	1
Primary U.S. Work Locations	
and Key Partners	2
Organizational Responsibility	2
Project Management	2
Technology Maturity (TRL)	2
Images	3
Technology Areas	3


Small Business Innovation Research/Small Business Tech Transfer

Variable Gas-Conductance Radiator: Lightweight, High Turndown Spacecraft Radiator, Phase I

Completed Technology Project (2017 - 2017)

Primary U.S. Work Locations and Key Partners

Organizations Performing Work	Role	Туре	Location
Quest Thermal Group	Lead Organization	Industry	Arvada, Colorado
Marshall Space Flight Center(MSFC)	Supporting Organization	NASA Center	Huntsville, Alabama

Primary U.S. Work Locations	
Alabama	Colorado

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Organization:

Quest Thermal Group

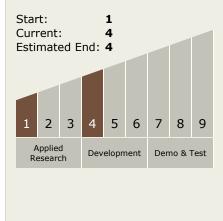
Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Project Management

Program Director:

Jason L Kessler

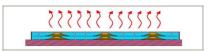

Program Manager:

Carlos Torrez

Principal Investigator:

Scott A Dye

Technology Maturity (TRL)


Small Business Innovation Research/Small Business Tech Transfer

Variable Gas-Conductance Radiator: Lightweight, High Turndown Spacecraft Radiator, Phase I

Completed Technology Project (2017 - 2017)

Images

Briefing Chart Image

Variable Gas-Conductance Radiator: Lightweight, High Turndown Spacecraft Radiator, Phase I Briefing Chart Image (https://techport.nasa.gov/imag e/133851)

Technology Areas

Primary:

- TX14 Thermal Management Systems
 - └─ TX14.2 Thermal Control
 Components and Systems
 └─ TX14.2.3 Heat
 - Rejection and Storage

